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Abstract

The method of invariant grid (MIG) is an iterative procedure for model reduction in chemical kinetics which is based on
the notion of Slow Invariant Manifold (SIM) [A.N. Gorban, I.V. Karlin, Method of invariant manifold for chemical kinet-
ics, Chem. Eng. Sci. 58 (2003) 4751–4768; E. Chiavazzo, A.N. Gorban, I.V. Karlin, Comparison of invariant manifolds for
model reduction in chemical kinetics, Commun. Comput. Phys. 2(5) (2007) 964–992; A.N. Gorban, I.V. Karlin, A.Y. Zin-
ovyev, Invariant grids for reaction kinetics, Physica A 333 (2004) 106–154; A.N. Gorban, I.V. Karlin, Invariant Manifolds
for Physical and Chemical Kinetics, Lecture Notes Physics 660, Springer, Berlin Heidelberg, 2005, doi: 10.1007/b98103].
Important role, in that method, is played by the initial grid which, once refined, gives a description of the invariant man-
ifold: the invariant grid. A convenient way to get a first approximation of the SIM is given by the spectral quasi-equilib-
rium manifold (SQEM) [A.N. Gorban, I.V. Karlin, Method of invariant manifold for chemical kinetics, Chem. Eng. Sci.
58 (2003) 4751–4768; E. Chiavazzo, A.N. Gorban, I.V. Karlin, Comparison of invariant manifolds for model reduction in
chemical kinetics, Commun. Comput. Phys. 2(5) (2007) 964–992]. In the present paper, a flexible numerical method to con-
struct the discrete analog of a quasi-equilibrium manifold, in any dimension, is presented. That object is named quasi-equi-
librium grid (QEG), while the procedure quasi-equilibrium grid algorithm (QEGA). Extensions of the QEM notion are
also suggested. The QEGA is a numerical tool which can be used to find a grid-based approximation for the locus of min-
ima of a convex function under some linear constraints. The method is validated by construction of one and two-dimen-
sional grids for a model of hydrogen oxidation reaction.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Relaxation of complex systems is often characterized by a fast dynamics during a short initial stage, while
the remaining period lasts much longer and it evolves along low-dimensional surfaces in the phase space
known as slow invariant manifolds (SIM). In that scenario, a simplified macroscopic description of a complex
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system can be attained by extracting only the slow dynamics and neglecting the fast one. For this reason, much
effort was spent to develop model reduction methods (the method of invariant grid (MIG) [9–12], the intrinsic
low-dimensional manifold method (ILDM) [25,26,39], the computational singular perturbation method (CSP)
[27–29], the equation-free approach [30], the singular PDEs method [32], the iterative procedure in [41], etc.)
based on the notion of SIM. The introduction of a convex Lyapunov function G, whenever the complex sys-
tem supports such a function, also proves to be very helpful in model reduction [12,18]. This is, in particular,
the case of chemical reactions in a closed system addressed in this paper. Indeed, it was shown that, through a
G function, good approximations of the SIM can be found (e.g. by constructing the spectral quasi-equilibrium
manifold – SQEM – or the symmetric entropic intrinsic low-dimensional manifold – SEILDM – [9,10]) and
refined by efficient MIG iterations. Moreover, it has been shown that the notion of QEM is also useful in dif-
ferent fields. For example, it was used in the implementation of Lattice Boltzmann schemes [16,17]. Construc-
tion of a QEM is addressed by minimization of G under linear constraints. Hence, the approach of the
Lagrange multipliers method can be used. More details about the Lagrange multipliers method can be found
in the classical work of Rockafellar [5]. In the present paper, the notion of quasi-equilibrium grid (QEG) is
introduced, as a discrete analog of QEM, and a constructive algorithm is developed. The procedure suggested
proves to be a flexible tool for constructing approximations of SIM.
2. Paper organization

The paper is organized as follows. In Section 3, basic notions are outlined: in particular, the general equa-
tions of dissipative reaction kinetics are reviewed in the notations which are used throughout the paper. At the
end of that Section, the method of invariant grid (MIG), the notion and properties of thermodynamic projec-
tor are briefly discussed (Section 3.2). In Section 4, the QEM definition and its geometrical interpretation are
reviewed, while in Section 5 the 1D quasi-equilibrium grid algorithm is presented. That algorithm is also illus-
trated, by means of an example, in Section 6. The extension of that algorithm to multi-dimensional grids is
developed in Section 7. In particular, two possible extension strategies are analyzed: the straightforward exten-

sion (Section 7.1) and, following the general idea given in [11], the flag extension (Section 7.2). The notions of
Guided-QEG and symmetric entropic guided-QEG are introduced in Section 7.3. Further details about the con-
struction of a quasi-equilibrium grid are given in Section 8. An illustrative example, in Section 9, shows how
those extension techniques work in practice. In order to find out how accurate is their SIM description, they
are also compared on the basis of the invariance defect (Section 9.3). A general discussion about the QEGA is
given in Section 10. Finally, results are summarized in Section 11.
3. Theoretical background

3.1. Dissipative reaction kinetics

In a closed system with n chemical species A1; . . . ;An, participating in a complex reaction, a generic revers-
ible reaction step can be written as a stoichiometric equation:
as1A1 þ � � � þ asnAn� bs1A1 þ � � � þ bsnAn; ð1Þ
where s is the reaction index, s ¼ 1; . . . ; r (r steps in total), and the integers asi and bsi are stoichiometric coef-
ficients of the step s. For each reaction step, we can introduce n-component vectors as and bs, with components
asi and bsi, and the stoichiometric vector cs ¼ bs � as. For every Ai, the extensive variable Ni describes the num-
ber of particles of that species. If V is the volume, then the concentration of Ai is ci ¼ N i=V . Dynamics of the
species concentration according to the stoichiometric mechanism (1) reads:
_N ¼ V JðcÞ; JðcÞ ¼
Xr

s¼1

csW sðcÞ; ð2Þ
where dot denotes the time derivative and W sðcÞ is the reaction rate function of the step s. In particular, the
polynomial form of the reaction rate function is provided by the mass action law:
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W sðcÞ ¼ W þ
s ðcÞ � W �

s ðcÞ ¼ kþs ðT Þ
Yn

i¼1

cai
i � k�s ðT Þ

Yn

i¼1

cbi
i ; ð3Þ
where kþs ðT Þ and k�s ðT Þ are the constants of the direct and of the inverse reactions rates of the step s, respec-
tively. The most popular form of their dependence is given by the Arrhenius equation:
k�s ðT Þ ¼ a�s T b�s expðS�s =kBÞ expð�H�s =kBT Þ:

In the latter equation, a�s , b�s are constants and H�s , S�s activation enthalpies and entropies, respectively. The
rate constants are not independent. Indeed, the principle of detailed balance gives a relation between these
quantities:
W þ
s ðceqÞ ¼ W �

s ðceqÞ 8s ¼ 1; . . . ; r; ð4Þ

where the positive vector ceqðT Þ is the equilibrium of the system (2). In order to obtain a closed system of equa-
tions, one should supply an additional condition for the volume V. For an isolated system the extra-equations
are U ; V ¼ const (where U is the internal energy), for an isochoric isothermal system we get V ; T ¼ const, and
so forth. For example, Eq. (2) in the latter case simply takes the form:
_c ¼
Xr

s¼1

csW sðcÞ ¼ JðcÞ: ð5Þ
Finally, also other linear constraints, related to the conservation of atoms, must be considered. In general,
such conservation laws have the following form:
Dc ¼ const; ð6Þ

where l fixed and linearly independent vectors d i are the rows of the l� n matrix D, and const is a constant
vector.

3.2. Outline of the method of invariant grid

In this section, we give an outline of the MIG for chemical kinetics. For details see Refs. [9–12,18].

3.2.1. Thermodynamic potential

If we turn our attention to perfectly stirred closed chemically active mixtures, then dissipative properties of
such systems can be characterized with a thermodynamic potential which is the Lyapunov function of (2)
[6,31]. That function implements the second law of thermodynamics: it means that during the concentration
evolution in time, from the initial condition to the equilibrium state, the Lyapunov function must decrease
monotonically. Therefore, if GðcÞ is the Lyapunov function, ceq (equilibrium state) is its point of global min-
imum in the phase space. A simple example of a function G is given by the free energy of ideal gas in a constant
volume and under a constant temperature:
G ¼
Xn

i¼1

ci½lnðci=ceq
i Þ � 1�: ð7Þ
when G is known, also its gradient rG and the matrix of second derivatives H ¼ ½o2G=ociocj� can be evalu-
ated, so that it is possible to introduce the entropic scalar product as follows:
hx; yi ¼ ðx;HyÞ; ð8Þ

where the notation (,) is the usual Euclidean scalar product.

3.2.2. The invariance condition

Let X be a general q-dimensional manifold in the concentration space. Let � be a subset in the q-dimen-
sional space Rq. We assume that X is defined by a function F which maps the points of � into the concentra-
tion space. In other words, such a manifold X is parametrized by q variables yi 2 � . Moreover, F is supposed
to be sufficiently smooth so that, in any concentration point c ¼ F ðy1; . . . ; yqÞ on X, the derivatives
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f i ¼
oF
oyi

; i ¼ 1; . . . ; q ð9Þ
can be evaluated. For each point c of X, the tangent space T is given by the linear sub-space spanned by vec-
tors f i: T ¼ Linff ig. In that case, a projector may be introduced at the point c. Let x be a generic n-dimen-
sional vector in the concentration space. A projector P transforms x into another n-dimensional vector Px 2 T
and fulfills the following property: PðPxÞ ¼ Px. Furthermore, we require that the image of P spans the tan-
gent space T (imðPÞ ¼ T ). In general, a manifold X is (positively) invariant with respect to the system (2)
when:
cð0Þ 2 X) cðtÞ 2 X 8t P 0: ð10Þ

Alternatively, X is an invariant manifold (with respect to (2)) if and only if the invariance condition holds:
½1� P�JðcÞ ¼ 0 8c 2 X: ð11Þ

when the manifold X is not invariant, it is not able to satisfy the invariance condition so that:
9c0 2 X : D0 ¼ ½1� P�Jðc0Þ 6¼ 0; ð12Þ

where D0 is the defect of invariance.

Remark. A projector P is defined at the points of a smooth q-dimensional manifold X. Such a manifold
may (or may not) be invariant. Notice that, for constructing a projector P at a given point c� 2 X, the tangent
vectors (9) are needed. In general, evaluation of those vectors does not require a global map F: a local one can
be safely used for that scope (only derivatives of F at c� are requested). In that sense, the invariance defect (12)
Dðc�Þ can be considered a local quantity.
3.2.3. Projectors and dissipation inequality

Let us now discuss further the projector appearing in the invariance equation. It is an operator which
for each point c 2 X projects the vector JðcÞ onto the tangent subspace of the manifold producing, in this
way, the induced vector field PJðcÞ of the reduced dynamics. In general, condition (11) does not require
any special constraint for P. However, the thermodynamic properties of the kinetic equations (2) define the
projector unambiguously [9,12,18,36]. To this end, let us define a differential of G, that is, a linear
functional:
DGðxÞ ¼ ðrGðcÞ; xÞ: ð13Þ

A special class of projectors is the thermodynamic one. If a projector belongs to this class then the induced
vector field respects the dissipation inequality:
DGðPJÞ 6 0 8c 2 X: ð14Þ

It has been shown that a projector P respects condition (14) if and only if [18]:
ker P � ker DG 8c 2 X; ð15Þ

where ker denotes the null-space of an operator.
3.2.4. Construction of thermodynamic projector

For solving the invariance equation (11) by iterations starting from an initial guess for the invariant man-
ifold, a projector must be specified on each iteration. Here, we remind the way to construct the thermody-
namic projector which is used in the MIG procedure [9]. This projector depends on the point c of a
manifold X and on the tangent space to X at that point. In the sequel, we are dealing with grid approximation
of a q-dimensional SIM. Let G be a discrete subset of a q-dimensional variables space Rq and let F jG be a map-
ping of G into the concentration space. If we select an approximation procedure to restore the smooth map F

from the discrete map F jG (we need a small part of F, derivatives of F in the grid points only), then the deriv-
atives f i ¼ oF =oyi are available, and for each grid point the tangent space is:
T ¼ Linff ig; i ¼ 1; . . . ; q: ð16Þ
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We assume that one of the points y 2 G maps into the equilibrium, and in other points intersection of the man-
ifold with G levels is transversal (i.e. ðDGÞF ðyÞðxÞ 6¼ 0 for some x 2 T ). Let us consider the subspace
T 0 ¼ ðT \ ker DGÞ. In order to define the thermodynamic projector, it is required, if T 0 6¼ T , to introduce
the vector ey which satisfies the following conditions:
ey 2 T ;

hey ; xi ¼ 0 8x 2 T 0;

DGðeyÞ ¼ 1:

8><
>:
Let P0 be the orthogonal projector on T 0 with respect to the entropic scalar product (8). Then the thermody-
namic projection of a vector x is defined as
T 0 6¼ T ) Px ¼ P0xþ eyDGðxÞ
T 0 ¼ T ) Px ¼ P0x:

�
ð17Þ
A discussion of pertinent properties of thermodynamic projector is in order.

3.2.5. Discussion about grids and thermodynamic projector

For the sake of clarity, in the present section we want to give some more details about the notions of grid
and thermodynamic projector. Let G be a discrete subset of Rq. For every point y 2 G, a neighborhood of y,
V y 	 G, can be considered. For regular grids, V y is a finite set of points which, usually includes the nearest
neighbors of y. The notion of the grid becomes useful for our purposes, if grid differential operators on G
are defined. Indeed, once a discrete mapping F jG of G into the concentration space is known, there is a need
to restore a differentiable map F from it (by approximating, for example, through low-order polynomials) so
that the following derivatives:
f i ¼
oF
oyi

����
y

¼
X
f2V y

giðy; fÞF ðfÞ ð18Þ
are available in each point y. Here, giðy; fÞ are some coefficients and they are dependent on the chosen approx-
imation. In our calculations, we often make use of second-order polynomials. We assume that (18) can be
evaluated in any point of G. We call such grids admissible and, in the sequel, we only deal with admissible
grids. In this way, in any grid point y, the subspace, spanned by the q vectors ff ig, is the local tangent space
T of the grid. Notice that the definition of a grid includes:

(1) A discrete subset G 	 Rq.
(2) A discrete mapping of G into the concentration space.
(3) The differentiation formulas (18) with given coefficients giðy; fÞ.

Moreover, such a grid is defined invariant (with respect to (2)) when, at any point y, the vector field JðF ðyÞÞ
belongs to the tangent space T. For more details see [11]. Here, It is important to stress that the construction of
the thermodynamic projector (17) can be carried out, at any grid node (and only there), without a need of a
global parametrization. Indeed, the tangent space T can be found at any y, via (18), by only using a local map-
ping of V y 	 G into the phase space. Let us discuss some properties of the thermodynamic projector. Those
special features make that operator particularly useful for model reduction. The thermodynamic projector
(as well as any other projector appearing in the invariance condition (11)) is characterized by its image and
null-space. In general, both those linear subspaces are dependent on the grid point y where P is constructed.
Thus, thermodynamic projector is an affine projector. As explained in Section 3.2.2, by construction, the
image of such operators spans the tangent subspace T of the grid at y. That is certainly the case for the ther-
modynamic projector, too. Nevertheless, the null-space of (17) is special. Let the system (2) be stiff. We expect
that any solution trajectory in the phase space, after a fast initial transient, is attracted to a low-dimensional
manifold X and then it does not leave it any more, moving toward the equilibrium point. X is the slow invari-
ant manifold (SIM) of (2). It is known that a good approximation of those fast motions close to a SIM point
c�, are given by the eigenvectors of Jacobian Lðc�Þ corresponding to eigenvalues with the largest absolute real
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part (see, e.g. [25]). Let us consider an invariant grid Ginv. That grid is a discrete analog of the SIM, and its
mapped points F ðyÞ in the phase space are expected to be located close to the SIM. The thermodynamic pro-
jector is constructed in such a way that, in any invariant grid node F ðyÞ, the null space of (17) is ‘‘almost”
spanned by the fast directions at that point, e.g. the fast eigenvectors of LðF ðyÞÞ. In order to illustrate this
important feature, we consider the following four-step three-component reaction, studied in a more detail
in Section 6
Fig. 1.
(b) Eu
1:A$ B; kþ1 ¼ 1;

2:B$ C; kþ2 ¼ 1;

3:C $ A; kþ3 ¼ 1;

4:Aþ B$ 2C; kþ4 ¼ 50:

8>>><
>>>:

ð19Þ
The atom balance takes the form:
Dc ¼ ½ 1 1 1 �
cA

cB

cC

2
64

3
75 ¼ 1 ð20Þ
and the equilibrium point is chosen as: ceq
A ¼ 0:1, ceq

B ¼ 0:5, ceq
C ¼ 0:4. Because of the constraint (20), the system

is effectively two-dimensional. As shown in Fig. 1a, any solution trajectory, after a rapid initial dynamics, is
attracted to a 1D curve and along it reaches the equilibrium point. The system is closed and the reaction (19)
takes place under constant volume and temperature, so that here the Lyapunov function is (7). A one-dimen-
sional invariant grid, parametrized by the concentration cB, was considered (diamonds in Fig. 1a). In any grid
node, the Jacobian matrix L was evaluated. Through spectral decomposition of L, it was possible to estimate
the fast direction af (eigenvector corresponding to the eigenvalue with the largest absolute value) and the slow
direction as (eigenvector corresponding to the eigenvalue with the smallest absolute value). Both eigenvectors
were projected, by means of the thermodynamic projector (17), at each node. In Fig. 1b, the Euclidean norm
of those projections kPaik is plotted versus the grid parameter cB. The eigenvectors were chosen such that
kafk ¼ kask ¼ 1. Fig. 2 shows the geometrical meaning and relevance of the thermodynamic projector to
the slow–fast decomposition: the fast component of any trajectory ‘‘almost” lies in the affine subspace
c� þ ker P, where c� is an invariant grid node while ker P is the null space of (17) constructed at c�. Note that,
although the thermodynamic projector can be constructed whenever an admissible grid is available, the pre-
vious result only applies for invariant grids. Therefore, the model reduction problem is split into two subse-
quent steps:
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(1) Construction of the slow invariant manifold.
(2) Reconstruction of the fast subspace.

The thermodynamic projector plays a different role in each of those steps. First, it is used for computing the
invariance defect in the iterative procedure of next Sections 3.2.6 and 3.2.7. Second, once the invariant grid
(slow subspace) is delivered, also the fast subspace can be reconstructed via null space of (17) at the invariant
grid nodes. In that sense, an initial condition for the ODE system (2), off the slow invariant grid Ginv, can be
‘‘projected” onto it through the kernel of thermodynamic projector evaluated on Ginv (see Fig. 2).

3.2.6. Newton method with incomplete linearization

When MIG method is applied, not a manifold is searched as a solution, but a set of points Ginv whose
defect of invariance is sufficiently small. MIG is an iterative procedure, that is, at the beginning, only an
initial approximation G0 is available. In general, G0 does not respect the invariance condition (11) satisfac-
torily so that (12) holds. For this reason the position of c0 2 G0 must be refined. We can think to correct
its location to get a new point, c0 þ dc, with a smaller defect of invariance, D ¼ ½1� P�Jðc0 þ dcÞ. If the
initial node is ‘‘not far” from the invariant manifold, a reasonable way to get the node correction dc is
to solve the linearized invariance equation where the vector field J is expanded to first order and the pro-
jector P to zeroth order:
½1� P�½JðcÞ þ LðcÞdc� ¼ 0: ð21Þ

Here, L is the matrix of first derivatives of J (Jacobian matrix). The Newton method with incomplete linear-
ization consists of Eq. (21) supplied by the extra condition [18]:
Pdc ¼ 0: ð22Þ

The additional condition (22) and the atom constraints (6) automatically can be taken into account by choos-
ing a basis fbig in the subspace S ¼ ðker P \ ker DÞ. Let h ¼ dimðSÞ, then the correction can be cast in the
form dc ¼

Ph
i¼1dibi, so that the linearized invariance equation (21) becomes the linear algebraic system in

terms of di:
Xh

i¼1

diðð1� PÞLbi; bkÞ ¼ �ðð1� PÞJ; bkÞ; k ¼ 1; . . . ; h: ð23Þ
Remark. Here, without a loss of generality, the usual scalar product (,) was used to get the components of the
left-hand side of (21) in the basis vectors fbig. However, a different scalar product can be also used.

In the case of the thermodynamic projector, it proves convenient to choose the basis fbig orthonormal with
respect to the entropic scalar product (8) and write Eq. (23) as
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Xh

i¼1

dihð1� PÞLbi; bki ¼ �hð1� PÞJ; bki; k ¼ 1; . . . ; h: ð24Þ
The projector (17) is ‘‘almost h; i-orthogonal”, that is, himP; ker Pi ffi 0 close to the SIM. Because of that spe-
cial feature, Eq. (24) can be approximated and simplified as follows:
Xh

i¼1

dihLbi; bki ¼ �hJ; bki; k ¼ 1; . . . ; h: ð25Þ
Note that, in general, an approximation carried out by Eq. (25) leaves a residual defect (12) in the grid nodes
which cannot be completely annihilated. Therefore, when a higher accuracy in the SIM description is required,
Eq. (23) is recommended.

3.2.7. Relaxation method

An alternative approach to solve Eq. (21) is the relaxation method. According to that method the correction
is written as c ¼ c0 þ sðcÞDðcÞ, and the function sðcÞ is obtained from the condition:
hD; ½1� P�½J þ sðcÞLD�i ¼ 0:
Solving with respect to s, gives:
sðcÞ ¼ � hD;DihD;LDi : ð26Þ
Eq. (26) shows that the relaxation method is explicit, but since it adjusts the node position acting only along
the direction of the defect D, typically we expect it to be less efficient in comparison with the Newton method.
On the other hand, this method is particularly easy to implement.

Remark. Assume that Ginv is the invariant grid while G0 is its initial approximation. Let the thermodynamic
projector (17) be constructed on G0. After the first MIG iteration (e.g. through (23) or (26)) every node of G0 is
refined so that a new grid G1 is now available. Note that, in order to continue refining, the projector (17) needs
to be constructed on the new grid G1. In general, at any MIG iteration, the grid is refined, consequently the
thermodynamic projector, constructed according to (17), also results updated at any iteration.

4. The initial approximation. The quasi-equilibrium manifold

Any iterative procedure needs to be supplied by an initial approximation. Since it plays an important
role for both the convergence and efficiency, that approximation must be carefully chosen. It was shown
that a reasonable way, for initializing the MIG, is to construct the quasi-equilibrium manifold (QEM)
[9,10].

4.1. QEM definition

All trajectories satisfy a set of linear equations (6) which represent the atom conservation. Let us consider q

additional linear constraints. Among all the states that fulfill the full set of constraints (atom conserva-
tion + extra constraints), we can choose that point which also minimizes the Lyapunov function G of the sys-
tem we are dealing with. Such a point lies on a manifold that is called the quasi-equilibrium manifold (QEM)
[12]. Let the ODE system (5) be stiff. In other words, we assume that the Jacobi matrix has eigenvalues with
different orders of magnitude. In this case, we expect that a solution trajectory in the phase space, after a short
transient, reaches a low-dimensional surface (slow invariant manifold). Indeed, the fast motions are exhausted
and they restrain the solution on that surface. If the slow invariant manifold exists, the QEM can be taken as a
reasonable approximation of it. For more details about the rationale and applications of QEM, the reader is
delegated to [9,12] and Section 10. Let a chemical system have n reactive species. The degrees of freedom of
that system are ðn� lÞ because of the atom balances (6). If q < ðn� lÞ is the dimension of the QEM, then the
macroscopic variables for its description are n1; . . . ; nq so that: ðm1; cÞ ¼ n1; . . . ; ðmq; cÞ ¼ nq. From a mathe-
matical standpoint, the solution of a variational problem:
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G! min;

ðmi; cÞ ¼ ni 8i ¼ 1; . . . ; q;

Dc ¼ const;

8><
>: ð27Þ
represents the QEM corresponding to the vector set fmig. Note that there is no general recipe for choosing the
set fmig. Nevertheless, in this paper we work out some suggestions for this (see, e.g. the SQEG below or the
GQEG construction in Section 7.3). Similarly, the dimension q belongs to the input data for the problem (27).
Now, we want to stress the geometry behind (27) because it will be extensively exploited in the sequel. The
geometric interpretation of a QEM is illustrated in Fig. 3 for a two-dimensional phase space ðcAi ; cAjÞ. Let
us consider the points where G level curves (convex curves in Fig. 3a and b) are cut by the QE-manifolds (bold
curves): in those points the inclination of the tangent to the G-level curves is constant. Different QEM can be
obtained by choosing different vector sets fmig. A special choice is done when fm1; . . . ;mqg are the q left eigen-
vectors of the Jacobi matrix LðceqÞ corresponding to the q eigenvalues with smallest absolute value. In that
particular case, solution of (27) has its own name: spectral quasi-equilibrium manifold (SQEM) [9,10].

4.2. Quasi-equilibrium manifold in practice

The minimization problem (27) can be solved by the method of Lagrange multipliers [5]. However, it is also
known that, when the number of constraints and variables increases, then that method may become compu-
tationally intensive (see also [20]). In the sequel, a new procedure to overcome that issue is presented. An algo-
rithm (quasi-equilibrium grid algorithm), which can be implemented in order to get a discrete analog of a QEM
in any dimension, is developed. This is achieved by investigating further the QEM geometrical construction.

5. 1D quasi-equilibrium grid (QEG) construction

First, let us consider a one-dimensional quasi-equilibrium manifold, that is, the set fmig consists of one vec-
tor m. Let us assume that a node c0 belongs to that manifold. One may now look for a new node c1 belonging
to the quasi-equilibrium manifold. In general, the node c1 can be obtained from c0 by shifting: c1 ¼ c0 þ d̂c0.
This idea is applicable whenever a QEM-node cn is known and a new one cnþ1 must be found (see Fig. 4):
cnþ1 ¼ cn þ d̂cn: ð28Þ
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different sets of linear constraints in the problem (27).



Fig. 4. Quasi-equilibrium grid: the basic idea.
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First of all, any node cn has to fulfill the constraint of atom conservation (6). Let fqig be a basis in the null
space of matrix D. A convenient way to take conservation conditions (6) automatically into account is to ex-
press any shift d̂cn as a linear combination of vectors qi:
d̂cn ¼
Xz

i¼1

liqi; ð29Þ
where z ¼ n� l is the dimension of the basis fqig. By referring to Fig. 4, let us now discuss further the tangent
space T to the G level surface in any quasi-equilibrium point cnþ1. The space T geometrically represents the
linear constraints of the problem (27). Therefore, any point c of T satisfies that constraint, but only cnþ1 min-
imizes G function. The line l passing from cnþ1 and c has the parametric form c ¼ u~t þ cnþ1, where ~t is a vector
of T spanning l while u is a parameter. In general, the linear constraints of the problem (27) can be also writ-
ten as:
ðm; cÞ ¼ uðm;~tÞ þ ðm; cnþ1Þ ) ðm;~tÞ ¼ 0 8~t;
ðd i; cÞ ¼ uðd i;~tÞ þ ðd i; cnþ1Þ ) ðd i;~tÞ ¼ 0 8~t;

�
ð30Þ
where m and d i are the reduced variable vector (q ¼ 1) and the generic row of matrix D, respectively. The vec-
tor ~t, that respects (30), can always be written as a linear combination of some vectors tj, where ftjg denotes a
basis in the null space of that matrix E, whose first row is given by m and the rest by the rows of D:
E ¼
m

D

� �
: ð31Þ
Note that the dimension of ftjg is z� 1. The quasi-equilibrium requirement simply becomes the orthogonality
condition:
ð$Gðcnþ1Þ;~tÞ ¼ 0 8~t 2 T ; ð32Þ

which also means:
ð$Gðcnþ1Þ; tjÞ ¼ 0 8j ¼ 1; . . . ; z� 1: ð33Þ

The quasi-equilibrium grid algorithm is based on the system (33) and two further assumptions. First, we as-
sume that the known node cn is close to the QEM, although it does not necessarily belong to the QEM. Sec-
ondly, let the vector d̂cn be small enough, so that the gradient $Gðcnþ1Þ can be approximated to first order:
$Gðcnþ1Þ ffi $GðcnÞ þHðcnÞd̂cn; ð34Þ
where HðcnÞ ¼ o2G
ociocj

h i
denotes the matrix of second derivatives of the function G evaluated at the point cn.

Upon substitution of Eqs. (34) and (29) in (33), we obtain:
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Xz

i¼1

ðtj;HðcnÞqiÞli ¼ �ðtj;$GðcnÞÞ 8j ¼ 1; . . . ; z� 1: ð35Þ
By using the entropic scalar product (8), Eq. (35) can be cast into the form:
Xz

i¼1

htj; qiili ¼ �ðtj;$GðcnÞÞ 8j ¼ 1; . . . ; z� 1: ð36Þ
Both the matrix H and the gradient $G are calculated at the known node cn. Note that the right-hand side
of (36) vanishes if the node cn belongs to the QEM. The node collection, subsequently evaluated through (36),
will be called a quasi-equilibrium grid (QEG).

5.1. Closure through the spacing condition

Note, however, that the system (36) is not closed (z unknowns li, but z� 1 equations) because it lacks a
further information about the grid spacing. A reasonable closure for that system can be achieved by fixing
the grid spacing (e.g. in Euclidean sense):
Pz

i¼1

htj; qiili ¼ �ðtj;$GðcnÞÞ 8j ¼ 1; . . . ; z� 1;

kd̂cnk ¼ e;

8<
: ð37Þ
where e is a given number and kd̂cnk represents Euclidean norm of the vector d̂cn. The smaller e is chosen, the
more accurate the expression (34) is. As it will be shown below, for small e the QEG lies very close to the cor-
respondent quasi-equilibrium manifold. Additional condition makes (37) a non-linear algebraic system. A way
to solve it will be now discussed. The idea is to find the general solution of the linear system (36), and then to
choose the one which also fulfills the non-linear condition in (37). Let the basis fqig be orthonormal (in
Euclidean sense). That is not crucial, but it proves to be convenient in the following analysis. Indeed, the
non-linear system (37) now is cast in the following form:
Pz

i¼1

htj; qiili ¼ �ðtj;$GðcnÞÞ 8j ¼ 1; . . . ; z� 1;

Pz

i¼1

l2
i ¼ e2:

8>><
>>: ð38Þ
A general solution of (36) can always be written as:
l1

..

.

lz

2
664

3
775 ¼ w

m1

..

.

mz

2
664

3
775þ

p1

..

.

pz

2
664

3
775; ð39Þ
where w is a given parameter, while m ¼ ½m1; . . . ; mz�T and p ¼ ½p1; . . . ; pz�
T are the solution of the homogeneous

problem and a special solution of (36), respectively. Without any restriction, we assume ðm; mÞ ¼ 1. Once m and
p are known, the non-linear condition in (38) can be written, in terms of w, as
w2 þ 2ðm; pÞwþ ðp; pÞ � e2 ¼ 0: ð40Þ

If the solvability condition is satisfied,
ðm; pÞ2 � ðp; pÞ þ e2s > 0; ð41Þ

then the two real valued solutions of (40) (wI, wII), upon substitution into (39), give two possible sets
½l1; . . . ; lz�. Therefore, by using (28) and (29), two new nodes, cI

nþ1 and cII
nþ1 (both close to the quasi-equilib-

rium manifold) can be evaluated from the previous node cn (see Fig. 5). A criterion, able to choose between
these two solutions, depends on the phase space zone where the grid needs to be constructed. This idea will be
clarified in Section 8. Usually, the equilibrium point is supposed to be a good starting node for the QEG pro-
cedure: c0 ¼ ceq.



Fig. 5. Two solutions for the 1D QEG algorithm.
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Remark. The QEG-equations (36) can be generalized as follows:
Xz

i¼1

htj; qiili ¼ �gðtj;$GðcnÞÞ 8j ¼ 1; . . . ; z� 1; ð42Þ
where g is a parameter 0 6 g 6 1. When g ¼ 1, (36) is recovered. On the other hand, if the QEG-nodes are
close to the QEM, then the non-homogeneous terms can be neglected (they vanish on the QEM). Therefore,
a reasonable approximation of the system (36) is given when g ¼ 0. In the latter case, the solvability condition
(41) is fulfilled. If g ¼ 1 and (41) does not hold, that parameter can be chosen in such a way that the solvability
condition is satisfied. In the following, if not otherwise stated, it is assumed g ¼ 1.
6. Example of 1D SQEG algorithm

In this section, an example will be considered in order to illustrate how the algorithm, described in the pre-
vious section, works for finding a one-dimensional SQE-grid. That grid will be compared with the pertinent
spectral quasi-equilibrium manifold, too. Let us consider the reaction (19). In this case, once a 3-component
vector m has been chosen, the QEM equation can be found by solving the variational problem (27):
G! min

ðm; cÞ ¼ n;

Dc ¼ 1:

8><
>: ð43Þ
In the sequel, the spectral quasi-equilibrium manifold [9,10] will be constructed. The Jacobian matrix L in the
equilibrium point and its slowest left eigenvector xs

l are:
LðceqÞ ¼
�30 �4:8 13:5

�24 �6:2 13:75

54 11 �27:25

2
64

3
75; xs

l ¼ ½ 0:8807; �0:3905; 0:2681 �: ð44Þ
Solution to the problem (43), with the choice m ¼ xs
l, delivers the 1D SQEM for the case shown in Fig 1a. Let

us rewrite (43) in a more explicit form:
c0A ¼ 0:3072þ 0:7867n� 0:5180/ðnÞ;
c0B ¼ 0:6928� 0:7867n� 0:4820/ðnÞ;
c0C ¼ /ðnÞ;
oGð/;nÞ

o/ ¼ 0; o2Gð/;nÞ
o/2 > 0;

8>>>><
>>>>:

ð45Þ
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where c0 ¼ ½c0A; c0B; c0C� is the solution of the problem (43), while / denotes the relation between cC and the
reduced variable n on the SQEM. By using the G function (7), the problem (45) is equivalent to the equation
Fig. 6.
very go
0:3072þ 0:7867n� 0:5180/
0:1

� ��0:5180
0:6928� 0:7867n� 0:4820/

0:5

� ��0:4820 /
0:4

� �
� 1 ¼ 0: ð46Þ
The solution of (46), by means of relations (45), gives the SQEM shown in Fig. 6a. We may now apply the QEG-
algorithm described above, in order to make a comparison with the analytic solution just found. An orthonormal
basis fqig in the null space of the matrix D ¼ ½ 1 1 1 � has dimension z ¼ 2 and can be chosen as follows:
q1 ¼ ½�0:5774; 0:7887; �0:2113�;
q2 ¼ ½�0:5774; �0:2113; 0:7887�:

�
ð47Þ
Since the matrix E has the form:
E ¼
0:8807 �0:3905 0:2680

1 1 1

� �
; ð48Þ
a vector t spanning kerðE) is
t ¼ ½�0:4229; �0:3934; 0:8163�:

The system (38), in this example, simply reads:
ht; q1il1 þ ht; q2il2 ¼ �ðt;$GÞ;
l2

1 þ l2
2 ¼ e2:

�
ð49Þ
By solving (49) in a QEG-node cn, the shift vector d̂cn ¼ l1q1 þ l2q2 allows to evaluate the new QEG-node
cnþ1 ¼ cn þ d̂cn. The QEG procedure, starting from the equilibrium point ceq ¼ c0, was performed twice, keep-
ing uniform parameter e2 ¼ 10�3. The first time, by choosing the solution in such a way that cBnþ1

< cBn , the left
branch of the SQE-grid was obtained; then, by imposing cBnþ1

> cBn , also the right branch was computed. The
algorithm was terminated as soon as at least one component of the new node cnþ1 becomes negative. The re-
sult, shown in Fig. 6b, proves that the SQE-grid is in excellent agreement with the analytical curve (SQEM).

Remark. Notice an ‘‘a priori” assumption that the SQEG can be uniquely parameterized by the variable cB.
Indeed, the choice between the two possible solutions of the problem (49) is done by checking the positivity of
DcB ¼ cBnþ1

� cBn . Such an approach might not work if the chosen parameter is not suitable for that purpose.
For example, in the case of Fig. 6b, the variable cC cannot be used because of a turning point. The latter aspect
will be discussed in Section 8.
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6.1. Grid spacing choice

There is no need to stress the importance of the grid spacing parameter e for the QEG accuracy. In the case
of Section 6, the SQEG was computed several times with different values of e. The QEG algorithm is based on
the linear approximation (34). Therefore, the smaller is kd̂cnk ¼ e the more accurate is the QEM description by
means of the QEG. Nevertheless, the smaller is e the larger is the number of times that the system (37) must be
solved to have a grid of a fixed size. For this reason, we need to keep e as large as possible. We estimated (at
least the order of magnitude) the upper limit of spacing (eu) which gives a QEG ‘‘not far” from the relative
QEM. From our numerical experiments, a reasonable value for that was eu ffi 10�1. As Fig. 7 shows, the
QEG is not far from the QEM even for a quite coarse grid (e > eu).
7. Generalization to multi-dimensional grids

The QEG algorithm, which has been developed for constructing one-dimensional grids, can be modified in
order to get multi-dimensional grids, whenever needed. From all reasonable extension strategies, two of them
will be analyzed here: a straightforward extension and a flag extension (the flag extension, for invariant grids,
was introduced in Ref. [11]). In the first case, the algorithm of Section 5 and the equation system (38) are tuned
for a q-dimensional grid calculation. Here, the implicit assumption is that the grid dimension q is fixed and
uniform everywhere in the phase space (like for the QEM construction itself). However, the second and more
flexible approach, suitable for SQEG construction, was developed, too. In that case, the grid dimension can be
varied at will.
7.1. The straightforward extension

According to the straightforward extension, if a node cn close to the q-dimensional QEM is known, then a
new node cnþ1 can be added to the QE-grid by shifting cn:
cnþ1 ¼ cn þ d̂cn; d̂cn ¼
Xz

i¼1

liqi; ð50Þ
where fqig is a basis in the null space of matrix D. The linear constraints of the problem (27) define the tangent
space T to the G level surfaces in the new node cnþ1. Let c be a generic point of T, the line l passing from cnþ1

and c has the parametric form: c ¼ u~t þ cnþ1, where ~t is the vector of T which spans l and u is the parameter.
The generalized form of the relations (30) is
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ðm1; cÞ ¼ uðm1;~tÞ þ ðm1; c
i
nþ1Þ ) ðm1;~tÞ ¼ 0 8~t 2 T ;

..

.

ðmq; cÞ ¼ uðmq;~tÞ þ ðmq; c
i
nþ1Þ ) ðmq;~tÞ ¼ 0 8~t 2 T ;

ðd i; cÞ ¼ uðd i;~tÞ þ ðd i; c
i
nþ1Þ ) ðd i;~tÞ ¼ 0 8~t 2 T ;

8>>>>><
>>>>>:

ð51Þ
which means that vector ~t belongs to the null space of the matrix E ðker EÞ:
E ¼

m1

..

.

mq

D

2
66664

3
77775: ð52Þ
Now, the dimension of the basis ftjg in kerðEÞ is z� q. Since the quasi-equilibrium condition requires that,
among all the points c of T, cnþ1 has the minimal value of G, the following orthogonality conditions hold:
ð$Gðcnþ1Þ; tjÞ ¼ 0 8j ¼ 1; . . . ; z� q: ð53Þ

For small vector d̂cn, the approximation (34) can be used, so that the (53) become:
Xz

i¼1

htj; qiili ¼ �ðtj;$GðcnÞÞ 8j ¼ 1; . . . ; z� q: ð54Þ
As the system (54) shows, the larger is the QEM dimension (q) the smaller is the set of ‘‘mere” quasi-equilib-
rium equations available, while the number of unknowns remains constant (z). The closure of the rectangular
system (54) requires q more equations and has only to do with the geometric structure which we want to pro-
vide the grid with (e.g. grid spacing, shift vector orientation in the phase space, etc). In general, the geometric
structure of the grid under construction can be chosen at will: therefore there is no unique geometric closure
for that system. However, one possible condition could be imposed, like in (37), by fixing the Euclidean norm
of shift vector: kd̂cnk ¼ e. Nevertheless, (q� 1) geometric constraints are still missing. In order to illustrate
how the geometric closure issue can be overcome, the case q ¼ 2 will be considered in the sequel. For that case,
a possible closure, which can be easily generalized, will be presented. If a two-dimensional QEG has to be con-
structed, then only one extra equation is needed to close the system:
Pz

i¼1

htj; qiili ¼ �ðtj;$GðcnÞÞ 8j ¼ 1; . . . ; z� 2

kd̂cnk ¼ e:

8<
: ð55Þ
Fig. 8 shows that all the possible solutions of (55) are located, as a ‘‘crown”, near the QEM. A way to choose
only two of them can be achieved by introducing a new fixed vector ~m and imposing a given angle # between ~m
and d̂cn:
Xz

i¼1

ð~m; qiÞli ¼ kd̂cnk � k~mk cos#: ð56Þ
The choice # ¼ p=2 proves to be particularly convenient, as (56) becomes:
Xz

i¼1

ð~m; qiÞli ¼ 0: ð57Þ
Eq. (57) allows to write a closed system:
Pz

i¼1

htj; qiili ¼ �ðtj;$GðcnÞÞ 8j ¼ 1; . . . ; z� 2;

Pz

i¼1

ð~m; qiÞli ¼ 0;

kd̂cnk ¼ e;

8>>>>><
>>>>>:

ð58Þ



Fig. 8. 2D quasi-equilibrium manifold. Location of solutions of the system (55) in the phase space.
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where the extra information, through e and ~m, concerns the grid spacing and the phase space zone of interest
where the grid is constructed. In general, the geometric closure of (54) can be achieved when ðq� 1Þ indepen-
dent vectors f~mig and the parameter e are fixed. Here, we present an approach which allows to get a rectan-
gular structured grid. The general form of (58) is
Pz

i¼1

htj; qiili ¼ �ðtj;$GðcnÞÞ 8j ¼ 1; . . . ; z� q;

Pz
i¼1

ð~mj; qiÞli ¼ 0 8j ¼ 1; . . . ; q� 1;

kd̂cnk ¼ e:

8>>>>><
>>>>>:

ð59Þ
The q-dimensional grid construction is split in q subsequent steps. Starting from the equilibrium ceq, system
(59) is solved by choosing (q� 1) mj vectors among the q available and imposing:
~mj ¼ mj 8j ¼ 1; . . . ; q� 1. In this way, a first set of QEG nodes is attained as soon as e is known. Now, start-
ing from each of these points, the system (59), by using a different combination of mj vectors, gives some more
nodes. The procedure ends (qth step) when all the possible different combinations of (q� 1) vectors fmjg are
exhausted. In Section 9, this method will be explained by means of an illustrative example.

7.2. The flag extension

A multi-dimensional QE-grid construction becomes non-trivial especially when q becomes large. As
reported in Section 7.1, the straightforward extension requires the introduction of some additional vectors
~mj. The flag extension can be applied when a SQEG is searched. That procedure is based on the algorithm
presented in Section 5 and it naturally leads to a rectangular structured grid. The idea behind is simple and
makes this method flexible and suitable for constructing high-dimensional rectangular grids. Let us assume
that q is the grid dimension and the q SQE-vectors fm1; . . . ;mqg are fixed. Let m1 be the slowest eigenvector
(corresponding to the smallest eigenvalue by absolute value), m2 the second slowest and so forth. The grid
construction is achieved in q subsequent steps. In each step one more dimension is added to the grid. At
the beginning, by using m ¼ m1, the algorithm in Section 5 provides the 1D quasi-equilibrium grid. Now,
starting from any node c� of the latter grid, a new 1D QEG is constructed where m ¼ m2. In this case, the
second QEG represents a trajectory on the 2D-manifold attracted to the slowest 1D-manifold in the node
c�, once the fast dynamics is exhausted (see Fig. 9). G depends on the equilibrium point ceq: G ¼ Gðc; ceqÞ.
Since c� can be considered as a ‘‘local equilibrium” for the fast motion, the second 1D grid is obtained by min-
imizing G ¼ Gðc; c�Þ. Once the previous step is completed, the grid can be extended in the third dimension by



Fig. 9. A 2D flag. Once the 1D quasi-equilibrium grid is found, from each node c�, new 1D quasi-equilibrium grids are added. The second
slowest 1D grid represents the solution trajectory collected by the first 1D quasi-equilibrium grid in the node c�.

E. Chiavazzo, I.V. Karlin / Journal of Computational Physics 227 (2008) 5535–5560 5551
adding, in each node c0 of the new 2D grid, a 1D QEG where m ¼ m3 and G ¼ Gðc; c0Þ. In this way, the pro-
cedure is performed up to a q-dimensional grid. By extending partially the previous grid, it is possible to con-
struct grids whose dimension is different in different phase space zones. It is worth mentioning that the
straightforward and the flag extension deliver two different objects: the first one just gives the quasi-equilib-
rium grid ‘‘brute force”, while the second one is its convenient ‘‘approximation” which has some useful fea-
tures as it will be illustrated in the sequel. First of all, the flag grid does not demand any extra vector for the
geometric closure and the grid dimension can be easily varied in different phase space zones. Secondly, if a grid
refinement procedure (MIG) is used in order to get an invariant grid, as a refinement of the quasi-equilibrium
one [10], then the flag extension becomes a useful tool. Indeed, let us assume that a multi-dimensional invari-
ant grid is required in order to reduce a given model. A possible strategy might be given by a ‘‘hybrid proce-
dure” where the QEG algorithm and the MIG method are alternatively used according to the sequence:

� 1D quasi-equilibrium grid construction (slowest grid);
� MIG refinements until the 1D invariant grid is obtained;
� flag extension from 1D invariant grid to 2D quasi-equilibrium grid;
� MIG refinements until the 2D invariant grid is obtained;
� flag extension from 2D invariant grid to 3D quasi-equilibrium grid;
� MIG refinements. . .

7.3. Beyond SQEG: GQEG and SEGQEG

The latter suggestion sheds light on one more option which, if implemented during the flag extension,
allows to go beyond the SQEG approximation of the slow invariant manifold. Let us assume that the hybrid
procedure of Section 7.2 is employed and a k-dimensional invariant grid (let c� be its generic node) has to be
extended to a (k þ 1)-dimensional grid. This grid approximates the (k þ 1)-dimensional invariant grid better
than the SQEG does, if in each invariant grid node c� the vector m is chosen as the (k þ 1)th slowest left eigen-
vector of the Jacobi matrix Lðc�Þ. According to [9], here a considerable simplification can be achieved by
replacing the full Jacobian Lðc�Þ with:
Lsymðc�Þ ¼ 1

2
ðLðc�Þ þH�1LTðc�ÞHÞ; ð60Þ
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where LT is the ordinary transposition, and H is evaluated at the point c�, too. Matrix Lsym is symmetric
with respect to the entropic scalar product (8). For that reason the spectral decomposition will be much
more viable (see also Ref. [10]). Those two new approximations will be named: guided quasi-equilibrium

grid (GQEG) when the full Jacobian Lðc�Þ is used, while symmetric entropic guided quasi-equilibrium grid
(SEGQEG) if Lsym replaces the full matrix. In order to give an idea about the effort needed, for example
in a SEGQEG construction, let us consider a two-dimensional grid. In that case, the spectral decompo-
sition of a symmetric operator is performed only over the nodes of a one-dimensional grid. Moreover,
also a criterion, for getting a multi-dimensional grid, naturally applies: if at the node c� of the k-dimen-
sional invariant grid, the ratio jkkþ1j=jkkj (between eigenvalues of L or Lsym, respectively) is not larger
than a fixed threshold, the (k þ 1)-dimensional grid will not be extended at that point. In this way,
the grid dimension q is generally not uniform in the phase space. Several techniques suggested above
are only some reasonable ones. The flexibility of the method proposed allows to set up different proce-
dures, still based on the quasi-equilibrium grid approach: the QEG system (54) supplied with a geomet-
rical closure.
8. Grid construction

The construction of a QEG is entirely local. Without loss of generality, we can refer to the algebraic
system (37). It only depends on the local gradient rGðcnÞ and second derivative matrix HðcnÞ. For that
reason, in order to compute the unknown vector d̂cn, no ‘‘a priori” grid parameterization is requested.
However, a criterion able to choose between the two solutions of (37), without getting into troubles in
the case of turning points, is needed. We may overcome that problem with the help of a proper param-
eterization, as suggested in Section 6. In general, a QEG has a natural parameterization which is simply
given by the variables ni in (27). Let us refer to the one-dimensional construction described in Section 5.
Here, starting from the equilibrium point ceq as first node of the grid, the subsequent points can be cho-
sen by imposing the positivity of the inner product ðm; d̂cÞ. In general, by extending the grid outwards
from a zone of phase space close to the steady point, one reaches regions where the solution becomes
unphysical (such as negative concentrations of some species). In that case, the evaluated node is cut
off while the procedure starts again from ceq. Now, solutions d̂cn with ðm; d̂cÞ < 0 are considered till
non-negative concentrations are found. Let n be the dimension of the phase space. The one-dimensional
grid is described as an ordered sequence of nodes. Those nodes can be collected in n one-dimensional
arrays, where in each of them a different specie is stored. However, different criteria for choosing the solu-
tions, not based on the grid parametrization, may be also used. Let c0 ¼ ceq. Let cI

1 and cII
1 be the two

solutions to (38) at c0. Assume that the second grid node is c2 ¼ cI
1. The third grid node can be chosen

such that the Euclidean distance kc3 � c0k is maximum. Indeed, one of the two solutions evaluated at c2 is
located close to c0: they would overlap if the quasi-equilibrium grid nodes were exactly on the pertinent
quasi-equilibrium manifold. In this way, at any grid point cn, by choosing the solution which has the
maximum distance kcnþ1 � cn�1k, the first branch of the grid is computed. Once the boundary is reached,
the procedure is terminated. By means of the same criterion, the second grid branch is constructed start-
ing from c0 and choosing the subsequent node as c2 ¼ cII

1 . This strategy can be applied also for multi-
dimensional grids, if the flag extension is used. Indeed, once the one-dimensional grid is found, the pro-
cedure can be applied as previously described. Now the starting point is any node of that grid. In this
way, a two-dimensional grid is built up. Here the nodes are stored in n two-dimensional arrays where
the previous arrays are embedded as a single column. Similarly, the latter grid can be extended in the
third dimension and so on.
9. 2D grid example: hydrogen oxidation reaction

Let us consider a model for hydrogen oxidation reaction where six species H2 (hydrogen), O2 (oxygen),
H2O (water), H, O, OH (radicals) are involved in six steps in a closed system under constant volume and tem-
perature (from Ref. [12], p. 291):
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1:H2 $ 2H; kþ1 ¼ 2;

2:O2 $ 2O; kþ2 ¼ 1;

3:H2O$ HþOH; kþ3 ¼ 1;

4:H2 þO$ HþOH; kþ4 ¼ 103;

5:O2 þH$ OþOH; kþ5 ¼ 103;

6:H2 þO$ H2O; kþ6 ¼ 102:

8>>>>>>>><
>>>>>>>>:

ð61Þ
The conservation laws are:
2cH2
þ 2cH2O þ cH þ cOH ¼ bH ¼ 2;

2cO2
þ cH2O þ cO þ cOH ¼ bO ¼ 1;

�
ð62Þ
when the equilibrium point is fixed, for example
ceq
H2
¼ 0:27; ceq

O2
¼ 0:135; ceq

H2O ¼ 0:7; ceq
H ¼ 0:05; ceq

O ¼ 0:02; ceq
OH ¼ 0:01; ð63Þ
then the rest of the rate constants k�i are calculated using the detailed balance principle (4). The system under
consideration is fictitious in the sense that the subset of equations corresponds to the simplified picture of this
chemical process and the rate constants reflect only orders of magnitude for relevant real-word systems. We
assume that the Lyapunov function G has the ideal gas form:
G ¼
X6

i¼1

ci ln
ci

ceq
i

� �
� 1

� �
: ð64Þ
Here, we are interested in the 2D SQEG construction. Two left eigenvectors of Jacobian matrix
LðceqÞ are:
xs1
l ¼ ½�0:577; �0:568; 0:225; 0:0482; 0:0666; �0:536�;

xs2
l ¼ ½0:00682; �0:00595; 0:0221; �0:7; �0:713; 0:423�;

(
ð65Þ
where xs1
l and xs2

l are the slowest and the second slowest one, respectively.
9.1. The 2D straightforward extension

In order to get a 2D SQEG for that example, the straightforward extension was used as first strategy.
Matrices D and E take now the form:
D ¼
2 0 2 1 0 1

0 2 1 0 1 1

� �
; E ¼

�0:577 �0:568 0:225 0:0482 �0:0666 �0:536

0:00682 �0:00595 0:0221 �0:7 �0:713 0:423

2 0 2 1 0 1

0 2 1 0 1 1

2
6664

3
7775:

ð66Þ

As suggested in the end of Section 7.1, the procedure has been started from the equilibrium point and it was
split in two subsequent steps. At the beginning, the system (58) was solved by imposing e2 ¼ 0:5� 10�3 and
~m ¼ xs2

l : in this way, the grid nodes, denoted by circles, in Fig. 10 were obtained. During the second step, (58)
was solved by starting from any circle: this time, the geometric constraints were e2 ¼ 0:5� 10�3 and ~m ¼ xs1

l .
During that step, in each circle, the horizontal dots of Fig. 10 were found, too.
9.2. The 2D flag extension

Here we apply the flag extension procedure. For that the 1D spectral quasi-equilibrium grid is needed.
Matrices D and E are in this case:
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D ¼
2 0 2 1 0 1

0 2 1 0 1 1

� �
; E ¼

�0:577 �0:568 0:225 0:0482 0:0666 �0:536

2 0 2 1 0 1

0 2 1 0 1 1

2
64

3
75: ð67Þ
Starting from the equilibrium point ceq, the system (38) was solved by fixing e2 ¼ 1� 10�3 (see Fig. 11). The
flag extension was used to get a 2D grid out of the 1D one. Now, the new matrix E reads:
E ¼
0:00682 �0:00595 0:0221 �0:7 �0:713 0:423

2 0 2 1 0 1

0 2 1 0 1 1

2
64

3
75;
while the Lyapunov function G has the form:
G ¼
X6

i¼1

ci ln
ci

c�i

� �
� 1

� �
; ð68Þ
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where c� ¼ ½c�1; . . . ; c�6� is any 1D grid node which is extended in the second dimension (see Fig. 9). Fig. 12a and
b show two different 2D SQE-grids: the first one is obtained by extending the 1D SQE-grid, while in the second
case the 1D invariant grid is used. In other words, the latter result was attained by the ‘‘hybrid procedure”

QEGA + MIG suggested in the end of Section 7.2. For both cases, in the second dimension, the grid spacing
was e2 ¼ 0:5� 10�3.

9.3. The 2D GQEG and SEGQEG

Finally, the GQEG and SEGQEG approximations are computed for the hydrogen oxidation reaction (61)
(case 1 in Fig. 13). The grid spacing was kept uniform, e2 ¼ 0:45� 10�3. Each grid has 10� 15 nodes and it is
compared with both the SQEG (straightforward extension) of similar size (check Table 1) and the invariant
grid. The invariant grid was obtained by refining the approximations through the MIG procedure. All those
grids lie quite close to each other. However, a ‘‘more pathological” case 2 was also analyzed (see Fig. 14).
Now, the SQEG, far from the equilibrium, presents a remarkable deviation from the invariant grid: now
the rate constant set is taken as kþ1 ¼ 20, kþ2 ¼ 1, kþ3 ¼ 1, kþ4 ¼ 103, kþ5 ¼ 103, kþ6 ¼ 102, while the equilibrium
point coordinates are still given by (63). For that case, the SQEG, GQEG and SEGQEG were constructed by
choosing the grid spacing and size as for the previous case 1. Note that all the grids were partially extended
only below the equilibrium point in the phase space zone where they present the largest deviation from the
invariant grid. This time those three approximations have a low invariance defect only near the equilibrium.
In order to estimate how far each grid is from the invariant one, the following procedure is implemented. A
10� 15 matrix, collecting in any grid node an invariance defect measure, is constructed. As suggested in [10],
that local measure may be

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD;DÞ=ðJ ; JÞ

p
, where D and J are the invariance defect (12) and the vector field of

(5), respectively. D is evaluated by using the thermodynamic projector (17). By averaging over all the invari-
ance defect measures, the mean invariance defect is provided: results for both cases are condensed in Table 1.
Note that the adopted invariance defect measure is dimensionless as it compares the invariance defect with the
vector field. Calculations prove that the GQEG is better than the SQEG (straightforwardly extended);
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nevertheless the SEGQEG construction, since it requires a much lower computational effort and still has an
error similar to the GQEG, is recommended when the SQEG is considered not satisfactory (e.g. large mean
defect).



Table 1
Mean invariance defect (dimensionless): three approximations of the invariant grid under comparison for the hydrogen oxidation reaction

1. Case 2. Case

SQEG 0.318 0.645
GQEG 0.238 0.460
SEGQEG 0.303 0.491

In case 1, the parameter set is: kþ1 ¼ 2, kþ2 ¼ 1, kþ3 ¼ 1, kþ4 ¼ 103, kþ5 ¼ 103, kþ6 ¼ 102, e2 ¼ 0:45� 103. In case 2, the parameter set is:
kþ1 ¼ 20, kþ2 ¼ 1, kþ3 ¼ 1, kþ4 ¼ 103, kþ5 ¼ 103, kþ6 ¼ 102, e2 ¼ 0:45� 103.
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10. Discussion of the method

The presented approach is implicitly based on a hypothesis about connected slow invariant manifold. This
is not always the case. Further aspects of the applicability of quasi-equilibrium approximation can be found in
Refs. [9–12,43]. Nevertheless, when that hypothesis is valid, the rationale behind the fact that quasi-equilib-
rium manifolds represent an approximation of the slow invariant manifold, in the case of fast and slow motion
decomposition (i.e. gap in the eigenvalues of the Jacobi matrix) and existence of a Lyapunov function G, is
illustrated in Fig. 15. For such systems, a solution trajectory that approaches the slow invariant manifold, dur-
ing the initial fast transient, only moves (approximately) in the fast subspace L. Since G is decreasing in the
course of the fast motions, points c� which minimize G on the affine spaces ðc� þ LÞ are expected to be located
close to the slow invariant manifold. However, when the construction of the slow invariant manifold needs to
be addressed, the subspace L is not known ‘‘a priori” and it generally depends on the point c�. Hence, for con-
structing the quasi-equilibrium approximation, a guess of L is needed. Here, it is important to discuss some
connections with the work of other authors. It is very well known that for some closed reactive systems, the
Lyapunov function is given by thermodynamic potentials (e.g. Gibbs free energy if temperature and pressure
are constant, entropy if energy and density are constant, etc.). Notice that the very first use of entropy max-
imization has to be referred to the classical work of Gibbs [1] and later addressed to Jaynes [2], Kogan and
Rozonoer [3,4]. More generally, the quasi-equilibrium approach constitutes an attempt in statistical mechanics
to link microscopic models to the macroscopic ones providing the latter with a closure. For example, in [7,8],
equations describing quasi-equilibrium dynamics for polymer are presented. Regarding the chemical kinetics,
also the method of rate controlled constrained equilibrium (RCCE), introduced by Keck and Gillespie [19],
Fig. 15. Implication of fast-slow decomposition and existence of a Lyapunov function G.
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reviewed by Keck (1990) and further developed in the recent literature [22,23], can be related to the quasi-equi-
librium approximation. An interesting geometric viewpoint of RCCE is given by Tang and Pope [21]. After
choosing a set of constraints, RCCE method makes use of the assumption that chemical systems evolve
according to a sequence of quasi-equilibrium states which are function of the instantaneous values of such
constraints. Those constraints are related to the unknown fast subspace L and need to be chosen. In general,
some variable constraints (total moles, active valences, etc.), in addition to elemental fixed constraints (total
number of atoms), are imposed for minimizing the thermodynamic potential and getting the species con-
strained composition. In order to evaluate that constrained-equilibrium point, the Lagrange multipliers prob-
lem can be iteratively solved via available routines (see e.g. STANJAN [24]). Nevertheless, some differences
between the two approaches need to be stressed. The QEGA is not an iterative procedure. Assuming that
the steady state (or any other point close to such a QE-manifold) is known, it aims at computing a set of nodes
in the phase space (QEG) approximating the quasi-equilibrium manifold. Since the latter grid is generally not
invariant [21] (see also Table 1), it has to be tabulated and used only as first approximation in the MIG pro-
cedure described in Sections 3.2.6 and 3.2.7. Moreover, the suggested construction uses a special choice of the
constraints, based on spectral decomposition of Jacobian at few points, for constructing SQEG, GQEG and
SEGQEG. As the above examples show, such approximate grids are accurate only in a neighborhood of equi-
librium (see also [10]). However, here we are not interested in the quasi-equilibrium dynamics per se. For that
reason, once a grid is constructed by the QEGA, it needs to be refined via MIG iterations. Only the fixed point
of the MIG method (invariant grid) is considered for integrating the reduced system. The latter aspect of
model reduction is going to be illustrated in a forthcoming publication. As stated elsewhere in the paper,
the classical approach to the problem of minimization of convex functions subject to constraints is the
Lagrange multipliers method. When the number of species becomes large enough, a non-linear system needs
to be solved through Newton–Raphson iterations for each chemical constrained-equilibrium point. Alterna-
tively, the chemical composition of ideal gas mixtures may be evaluated, through the more stable Gibbs func-
tion continuation method, by integrating a set of ODEs [20]. However, here we suggest a grid-based approach
to that problem. Indeed, the quasi-equilibrium algorithm is a tool that aims at extending automatically a grid
around a given point in the phase space. Although such a procedure is based on the geometry behind the
Lagrange multipliers method, as explained in Sections 7.2 and 7.3 it may also deliver approximations of
the slow invariant manifold even more accurate than a quasi-equilibrium grid itself (see Table 1). Indeed, a
multi-dimensional GQEG (or SEGQEG) is not only based on the minimization of a thermodynamic potential,
but it also takes into account information from the Jacobi matrix evaluated at few points. Therefore, a GQEG
is not a ‘‘pure” quasi-equilibrium approximation any longer. In that case, the flag extension allows both the
construction of objects of varying dimension and implementation of hybrid procedure: QEGA + MIG. On the
other hand, in such a flexible grid-based approach, in order to compute an uniform grid the number of points
scales as e�q. Where q is the grid dimension, while e is the small grid parameter. In general, e is not kept con-
stant. For instance, during a hierarchical construction (flag extension), it is convenient to use a coarser grid for
describing the lowest-dimensional manifolds. During our calculations, the criterion used to end the grid was
based on non-negative concentrations. As soon as the evaluated grid point leaves the admissible phase space, it
is cut and the procedure terminated (see also Section 8). That may seem inefficient, but it is worth to point out
that the construction of the quasi-equilibrium grid is done only once and then tabulated for a later use in MIG
procedure.

11. Conclusions

In this paper, the problem of quasi-equilibrium manifold approximation by means of a grid description is
addressed. To this end, the notion of quasi-equilibrium grid (QEG) is introduced and a proper algorithm to
construct it, in any dimension, is suggested (QEGA). It has been shown, through illustrative examples, that the
QEGA gives a very good QEM approximation. The QEGA is a completely numerical procedure and it reveals
particularly suitable for providing the MIG procedure with the first SIM approximation. As it has been illus-
trated, some proper hybrid procedures QEGA + MIG, where both methods are alternatively used, allow to
obtain accurate SIM descriptions. In particular, it was proved that two special QEGA + MIG procedures deli-
ver enhanced approximations of SIM: the guided quasi-equilibrium grid and the symmetric entropic guided
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quasi-equilibrium grid. Here, we want to stress the two major advantages of the method proposed. First of all,
it is a numerical algorithm which only deals with nodes sets in the concentration space. Moreover, it is a local
construction: namely, the computation of a new node cnþ1, which has to be added to the grid, only depends on
the previous neighbor cn. Those two aspects make the QEG construction suitable for numerical applications
and parallel realizations.

The suggested method was also applied to a realistic non-isothermal system reacting according to the
detailed hydrogen mechanism described in [13]. The interested reader can find a detailed account in [14], where
an estimation of the computational time for generating QE-grid nodes on a single processor is also given.

Finally, it is not excluded that the QEGA is applicable not only for model reduction, but in different fields,
too. Indeed, it was mentioned that the QEM notion already is exploited for some applications in Lattice Boltz-
mann schemes simulations. More generally, the QEGA is a numerical tool which can be used to find a grid-
based approximation for the locus of minima of a convex function under some linear constraints. In this paper
we focused only on the geometry of the model reduction, that is, construction of slow invariant manifolds
approximations. The implementation of grid-based integrators for dynamic equations will be presented in a
separate publication.
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